
Linux-Inject
Tyler Colgan, NCC Group

Overview

• What does it do?

• What can you do with it?

• Demos

• Limitations

• Comparison with Windows DLL injection

• Comparison with LD_PRELOAD

• How does it work?

What does it do?

• Loads a shared object into a running process

• Provides Linux analogue of Windows DLL injection

• Calls ptrace() on target process

• Essentially acts as a custom debugger

• Injects shared object loading code into the target process

What can you do with it?

• Easily execute functions inside the context of another process

• Whichever function in the SO is marked with __attribute__((constructor)) will

be called when the SO gets loaded

• So, you get code execution as soon as your SO is loaded!

• Ultimately, it lets you modify the behavior of any program you’re allowed to

attach to with ptrace()

What can you do with it? (cont.)

• Create new threads

• Call exec() and run a different program

• Change memory permissions with mprotect()

• Make code sections writable

• Make data sections executable

• Output debug messages

What can you do with it? (cont.)

• Hook functions

• NOTE: You have to do this yourself in your shared object’s constructor!

• Easy way: unload competing shared object with dlclose()

• Hard way: manually redirect function calls by modifying process memory

• Temporarily redirect functions at runtime for debugging purposes

• Video game hacking, just like on Windows

• Anti-cheat technologies are currently much less developed on Linux

Demos

Limitations

• Must be able to call ptrace() on the target process

• Does not let you attach to higher-privileged processes

• Many systems disallow ptrace()ing non-child processes by default via

/proc/sys/kernel/yama/ptrace_scope

• If you can’t change this kernel setting, this approach simply can’t work

• Does not perform hooking, only injection

• If you want to redirect functions, you need to do the dirty work of hooking yourself

• However, you get code execution as soon as your shared object is loaded

• More on this later

Comparison with Windows DLL injection

• VirtualAllocEx

• Performed from within the target process via injected malloc() call

• WriteProcessMemory

• Performed by copying data from injector to target with

ptrace(PTRACE_POKEDATA)

• CreateRemoteThread

• Not needed, because we’re hijacking a pre-existing thread

• LoadLibrary

• Performed by injected call to __libc_dlopen_mode()

Comparison with LD_PRELOAD

• Advantages over LD_PRELOAD

• Targets processes that are already running

• Does not require you to control the program’s environment as it starts up

• Not as easily detectable in the environment

• (Admittedly, still not hard to detect)

• Disadvantages compared to LD_PRELOAD

• Requires explicit function hooking in order to perform function redirection

• Interrupts and temporarily redirects program execution, which can cause

concurrency issues in large multi-threaded applications

• (Still working on debugging and fixing various strange and intermittent crashes)

How does it work?

1. Attach to target process with ptrace()

2. Inject loader code into target process

3. Target process executes the loader in several parts:

a. Loader allocates memory with malloc() [VirtualAllocEx]

b. Injector copies path on disk shared object to allocated buffer [WriteProcessMemory]

c. Loader calls __libc_dlopen_mode() to load shared object [LoadLibrary]

d. Injector checks whether shared object was loaded successfully

e. Loader calls free() on the allocated buffer

4. Injector restores previous state and detaches from target process

Attaching to target and injecting loader

• Requires /proc/sys/kernel/yama/ptrace_scope to be set to 0

• Injector finds an executable region of memory to store the loader

• Reads /proc/[pid]/maps and takes the first region marked as executable

• Backs up whatever’s stored there

• Backs up registers

• Copies loader in place and points program counter at it

• Continues target’s execution in order to start running the loader

Loader, part 1 – malloc()

• This step is analogous to calling VirtualAllocEx on another process on

Windows

• Injector determines the address of malloc() inside the target process by

reading its memory map

• Passes the malloc() addr and the amount of memory to allocate to the

loader via registers

• Need to allocate buffer in order to store full path on disk to the shared

object we want to load

• Loader halts execution after malloc() returns

• Injector reads registers in order to see malloc() return value

• malloc() return value provides address of allocated buffer

Loader, part 2 – Preparing to load

• This step is analogous to calling WriteProcessMemory on Windows

• The injector already has the address of the newly allocated buffer

• It uses ptrace() to copy the disk path of the shared object we want to load

into the buffer

• Injector gets the address of __libc_dlopen_mode() and passes it to the

loader via a register

• With this done, it continues the target process’ execution

Loader, part 3 – __libc_dlopen_mode()

• This step is analogous to calling LoadLibrary on Windows

• Loader calls __libc_dlopen_mode() to load the shared object

• It passes the previously allocated buffer as an argument so that

__libc_dlopen_mode() knows where to find our shared object

• After __libc_dlopen_mode() returns, the loader returns control to the

injector

• The injector checks the target’s register values and /proc/[pid]/maps

entries to check whether the shared object actually got loaded

Loader, part 4 – Cleanup

• Injector continues the target’s execution

• Loader calls free() on the allocated buffer and returns control back to the

injector

• The loader’s job is done, so restore the target process’ state from before

the injection

• Overwritten memory

• Register values

• Injector detaches from the target process and sends it on its merry way

• At this point, injection is (hopefully) complete!

More info

• Source code

• https://github.com/gaffe23/linux-inject

• NOTE: This is a personal repo, so it’s an unofficial release

• Official release to come after BH

• Contact info

• Tyler Colgan

• tyler.colgan@nccgroup.trust

Europe

Manchester - Head Office

Amsterdam

Cheltenham

Copenhagen

Edinburgh

Glasgow

Leatherhead

London

Luxembourg

Milton Keynes

Munich

Zurich

North America

Atlanta

Austin

Chicago

New York

San Francisco

Seattle

Sunnyvale

Australia

Sydney

